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Abstract

The well-known evaluation procedures of ice freezing
process on a cooled wall with a stationary value of
temperature cannot be used in calculations of thermoelectric
ice-makers with cellular ice-forms. One of the principal
reasons is the oscillation of temperature within forms, both
during freezing, and during thawing. The new approach to
calculation of load characteristics of thermoelectric modules,
treated as elements with known nominal characteristics,
allows to combine these equations with calculations of
freezing of ice in cells. This special approach is presented by
authors as a calculation procedure of bilateral freezing of thin-
walled pieces of ice in cells (for example, hemispherical and
other proper shapes) with the use of cooled insertions that are
disposed in cells while being integrated by design into the so-
called upper ice-form. The procedure allows to evaluate a
temperature of both forms at the end of freezing process, time
of both freezing and thawing of ice and ice machine
production output per hour including mass losses of ice during
thawing. The procedure ailso presents a possibility for
optimization of a thermoelectric ice-maker’s both construction
and cycle of production, which can be realised in selection of
a particular relation in sizes of the lower and upper form and
relation of cooling output of their refrigerating units. Outcome
of calculations for both experimental and serial models of
thermoelectric ice-makers demonstraie good concurrence to
experimental data.

Introduction

Known procedures of calculation of process of ice
formation upon a cooled wall of a stationary value of
temperature [1,2] cannot be wused at calculations of
thermoelectric ice generators with the cellular shape (further -
TEIG). One of the main reasons is the variability of shape
temperature at all phases of the process of ice production. This
feature is characteristic for thermoelectric ice-makers with
thermal defrosting of ice from walls by reversing a current of
feed of a thermoelectric refrigerator set. On the basis of the
new approach of calculation of a thermoelectric set as object
with known load characteristics enunciated in articles [3,4], in
a paper [5], the example of calculation of TEIG productivity
with unilateral freezing of ice on a flat wall and in cells of an
ice form was submitted. This procedure and results of
calculations made with it’s help, are accepted by us as the
base variant for the comparative analysis.

Unilateral ice freezing of different shapes
The freezing of a layer of ice by width &) can be

viewed as a linear problem in a boundless bath, with height h,

which is small as contrasied to equivalent diameter de.
These requirements can be presented as: h/degy—>0. Then,
the effect of lateral areas of a bath on a dynamics of ice
growth can be neglected. Let's take the advantage of the
formula (1) and form a definition of time 7, of freezing of ice
on a flat wall:

z=f-pi-(5[)2 (1)
2.4 -AT
where:
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r - specific melting heat, p, , Ay , 8, - density, thermal
conduction and ice depth, accordingly, T, - solidification
temperature, Ty, , Ty - initial and terminal temperature of a
wall of an ice form

Here, as well as in all subsequent formulas for the
freezing and the defrosting time, the definition of the average
arithmetical temperature of a wall during a time interval
between the beginning and the end of the process is used. The
linear character of change of the temperature in time is
acknowledged by numerous experimental data obtained on a
TEIG model with different ice forms. Generalizing upon
major volume of experimental data, the temperature is
assumed to be: Tg, = (-1 ...-3) °C.

Accordingly, for freezing on an interior and an exterior
surface of the cylinder:
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where: r, _radius of an interior cell , r,, _radius of an exterior
cell , 1, — relative radius of a layer of ice
The time of complete freezing of a ball with a radius R:
pror(R)?
Faamr =6 Jy-AT &L
If the heat exchange between a free surface of water in a
hemispherical form and an ambient air was neglected, the
formula (5) could be used also for calculation of freezing of a
hemisphere.
In case, when into an ice form, the water with temperature
Ty is flooded, that is higher than 0°C, it is necessary to take
the time of cooling of water up to a solidification temperature



into account. Then, in formulas 1,3,4,5, we use a difference of
enthalpies Ah instead of r:
Ah=r+c(Tw—Ty) (6)

For the increased precision of calculation, V.A. Bobkov
[1] recommends to take the heat of supercooling of ice into
account, which participation in an overall enthalpy usually
does not exceed 2%. As contrasted to the freezing of ice on a
flat wall or on pipes, where the heat capacity of a wall can be
neglected, the cellular aluminium shapes of a TEIG have a
major thermal lag. It is necessary to have this effect in mind,
while calculating the time of defrosting. Hence, to maintain
the logical uniformity of a calculation, the heat capacity of an
ice form should be also regarded in overall enthalpy Ah and
thus, it is necessary to enumerate this quantity onto a heat
capacity of water. Applying the above changes, the formula
(6) can be re-written as follows:

Ab =19+ ¢y (Tw - Ti) + A &1 (Tie - Ti) + N
+keer [(Tie +2) - Tid
where: A - coefficient depending on the shape of @ mesh (for a
flat wall A=1/2, for a hemisphere- A=5/6}, T, - terminal
temperature of the shape, (Ty, + 2) - initial temperature of the
shape, which, basing on experimental data, is accepted as a
stationary value equal to temperature at the end of defrosting
process, k; - coefficient of metal consumption or otherwise
scaling ratio; Ty, - solidification temperature,
k= 8¢Cs Betw €1 8
Bew - €quivalent ice depth, &; - mean width of an ice form, ¢, ,
¢ , ¢; - specific mass heat capacity of water, ice and ice form
accordingly

The analysis of the conducted calculations displays, that a
participation of the component k¢ ¢; [(Tye +2)-Ti] in overall
quantity Ah oscillates in a scope from 0,2 % up to 1,0 %,
depending on a construction of the shape.

The terminal temperature of the shape Ty is an unknown
quantity in formulas (2) and (7). To define it, we shall take
advantage of an equation of a heat flow continuity through ice
- shape wall border in the moment of termination of a process
of crystallization. The ice form with %, of cells is cooled by
the use of x thermoelectric modules. Now a unit cell of
volume V, with a surface ¥, shall be distinguished in the
shape, to which corresponds a known part of an entire cold
productivity of a set (i.e. alt modules). Then, it is possible to
write down:

Fi(To =T, ) Af8aw = x/% Q, 9)
where: Qq - cold productivity of the module. It is possible to
take not inflows of heat through isolation into account, seeing
how small they are. In case of unilateral freezing, it is
accepted to assume x/xy = 1.

Utilizing equations as shown in [3,4], the dependence (10)
that defines the thermoelectric module’s cold productivity can
be written down as (11):

Q= ¢, AT, [1-(1-T1 Y€ ]-cTy-Tg)-

10
-¢, (Tg-Ty) =

Q= Q*-c, (Tg- Ty) (n
where: Q * - peak cold productivity of the module at a current
of feed intensity I and temperature of the hot part of the

module, Ty, T, - temperature of the hot and cold part of the
module accordingly, ¢,- load coefficient. For a given module

type quantities Q * and ¢, are fixed and specified by a
producer in the technical data of a product.

Having specified K = Fy lt /& aw and accepting T, = T,
after substitution of (11) into (9) we obtain;

K(T,~T,) =Q,*- ¢, (T -T) (12)
Now (12) is solved, regarding T;
KTy +caT, - 0"
T = 0 TCALg QU (13)

Cpo+ K
More precise variant of calculation takes the thermal
resistance of layers of heat-conducting paste on work sides of
the module into account. Then, instead of temperatures T, and
T, , corrected temperatures T * and T,* are used. So, Tg <
Tg* and T >T *.
Having defined Ty , it is possible to spot the mean

temperaiure of the shape during freezing, by the use of the
formula (2).

Bilateral freezing in a TEIG with hemispherical cells

It is accepted as settlement, that during calculations, the
second (or any subsequent) cycle of ice production is
investigated, where the portion of water is flooded into the
previously refrigerated ice form, as shown in the formula (7).
The physical model of bilateral freezing differs from the
model of unilateral freezing by the fact, that the layer of ice is
considered thin enough to make the concept of equivalent
width unusable. The total width of a piece of ice (without the
width loss at defrosting) is represenied by a subtraction of
radiuses of a cell and msertion (fig. 1).

§ =R-r (14)

Fig. 1. The plan of a hemispherical cell of an ice-maker with
bilateral freezing: R - radius of a cell, r - radius of an insertion,
Iy - relative radius of a layer of ice.

The defining of dependence of the time of production of
ice and productivity of an ice-maker from radius of a cooled
insertion is an interesting question. In the beginning, it is
stated that half of the width 8 is freezed upon the lower part of
the shape, i.e. the cell, and second half - upon the upper part of
the shape, i.e. the insertion. In the calculations that followed,
the scope of change of an insertion radius was accepted as 2
up to 20 mm. It corresponds to the change of the width of each
half-layer from 1 up to 10 mm. It is also stated, that cold
productivities of sets of the upper and lower shape are equal,
and their sum makes for the cold productivity of base variant,



i.. as in case of the umilateral freezing. In computational
dependences, this sectionalization is submitted in the number
xo/2 of modules, freezing each shape.

Calculations are begun by defining the parameter K for
each radius of an insertion:

Ki=F )i A/ (Gu)i (15)

Further, terminating temperatures of the shapes (Ty)ys and
(T )ue are determined:
KTy +(xo/ x)cpaTy (x5 X)0g"

{Tx)i =
(xq /x)cp + K,

and mean differences of temperatures (AT;); are determined
after substitution (T,); in the formula (2). Thus, it is should be
remembered, that along with the change of the insertion’s
radius, coefficient k, varies also. While calculating parameters
of an insertion, the change of it’s width can be taken into
account in the simplified view, for example under the linear
law from minimal up to the maximal value. As long as the
participation of the component (ks ) ¢f [(Tw +2) — (Ti)i] in
overall difference of enthalpies does not exceed 1-2 %, such
simplification practically does nof influence the precision of
calculations.

Time of freezing of each half-layer is determined by
Lykov's dependences [2] for spherical layers. For a layer iced
outside (the cell):

(16)
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For a layer iced from within (the insertion):
2
Ah:(r. —r)* (2 !
Tz(r‘,_.)=p1 i (rx — 1) @re +13) (18)
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The moment of meeting of moving towards each other
crystallization fronts is considered the moment of the
termination of the freezing process. For this purpose, the
combined equations (17) and (18) are solved in coordinates t-
1, with the MATHCAD program. For increased precision of
the calculation, the problem can be solved by a method of
successive approximations, taking width differences of half-
layers into account in the second run-through and adjusting
the corresponding quantities in formulas (15), (17), (18).

In the following step, we determine the time of defrosting.
The greatest impact upon this time is made by a thermal rating
of a set and the temperature of a shape in the beginning of a
defrosting process, that was spotted in the previous step as the
terminal temperature of the shape during the freezing,

The required thermal rating of a set (or a separate module)
Q, consists of the cold productivity in the appropriate mode of
operation and the electrical power W, consumed by a setina
phase of defrosting, what is followed in the equation of the
thermal balance of the thermoelectric module (19):

Q= (Qo Jotms + W (19)

The cold productivity of the module in a mode of
defrosting is defined according to the formula (10) with such a
difference, that it is necessary to accept the temperature of the
flowing water on an inlef into the heat exchanger as a value of
T,, and as a value T, — the average arithmetical temperature of
the shape during defrosting. At the beginning of the process of
a separation of ice from walls of an ice form, the temperature
of it’s wall equals 2°C Accordingly, the temperature sensor of

a termination of a defrosting process is usually attuned to this
temperature. In view of this fact:
Tg(odmr) =Y(Ta+ T t+2)
Power, consumed by the module in a mode of defrosting:
W= (Dot R

where R - electric resistance of the module. For the
simplification of calculation, the quantity (Djogme can be
accepted as a stationary value and equals the current of feed in
a mode of freezing. In practical application, once after
switching into a mode of defrosting, the current of the module
increases approximately by 25%, but then it is promptly
returned to the tentative value. The comparison of the
settlement and the experimental data displays, that the
simplification in calculations does not lead to increase of the
calculated time of defrosting, as the procedure shown does not
take the reverse effect of series of other factors into account,
for example, masses of auxiliary elements of a construtction of
an ice form.

The following assumption can be made, that because of a
low thermal conductivity of ice during defrosting, all it’s mass
doesn’t have enough time to get warmed above the cryoscopic
temperature and only the warmed-up part of the mass Am gets
thawed.

Ultimately, defining formula of the time of defrosting on
each shape:

(20

@
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where: py and py - density of ice and a material of an ice form.
The analysis of calculations results displays, that the time
amount of defrosting of ice on an ice form is greater than fime
of defrosting on an insertion, independently of the size of an
insertion. As the insertion is used for retrieving the ice from a
cell, for exact operation of an ice-maker it is required at first
to liberate the ice from the lower shape. From then, it follows
that under definition of an overall time of production cycle of
ice in the formula (23}, times of defrosting are added up:

admr ()

(22)

Te =T+ (Todmgt + (Toamedat (23)
Productivity of an ice-maker:
G = (m,, - Am )/, 249

where: m,, - mass of water, poured into the shape, m = Vi p,, ,
Am - losses of ice mass during defrosting;
Am = (8)odmr P Fi (25)
From experience of TEIG operation, it follows, that the
width of a layer of ice (8)yam makes 0,5 ... 0,7 mm and
depends on a surface roughness of the shape and force needed
to separate a piece of ice from a shape surface.

The brief analysis of calculations results

Results of evaluations for an ice-maker LNT-0,5,
presented in the book [4], are submitted in a fig. 2. The
maximum of functions of absolute and relative productivity
takes it’s place close to the radius of an insertion of 18 mm,
that corresponds to the ice depth of 4 mm. At the further
diminution of an ice depth, despite of the diminution of time
of freezing, the productivity of an ice-maker drops, because of
the dominant effect of ice losses at defrosting.

Installing the hemispherical cooled insertion by the
radfus of 18 mm into the ceil results in the diminution of the
cell’s volume by 45 %. At the same time, in the paper [7], it is
agreed, that the optimum size (having a requirement G = max



in mind) of uncooled insertions makes 8-12 % of volume of
the cell.

relative productivity G [-]
]

G 0002 G004 0.006 0.008 0.01 0.012 0.014 0.016 0018 002 ©.022
radius of an insertion T [m)]

Fig. 2. Dependence of the relative productivity of a
thermoelectric ice-maker with hemispherical cells from the
radius of an insertion, where G, - productivity of the base
variant without an insertion.

Results of conducted calculations demonstrate the
satisfactory concurrence to the experimental data obtained on
the prototype of the LNT-0,5 ice-maker.

Conclusions

The offered procedure of calculation of a TEIG shows it’s
advantage in the combined view of different modes of the
thermoelectric module operation, both in processes of the
freezing and the defrosting of ice in a cell. The sectional
requirement is especially actual in case of the bilateral
freezing, when it is necessary to take differences in modes of
operation of the upper and lower refrigerator sets into account.
The bilateral freezing presents extra opportunities of the TEIG
parameters optimization, involving the selection of a cell and
insertion shape, the relative size of an insertion, the relation of
sets productivity, making for the optimum algorithm of
execution of separate operations of process of ice production.
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